
工学研究科の得意とする研究領域

研究領域と研究内容

研究領域		研究内容
領域A	ロホ*ティクス・メカトロニクス	ロボット、メカトロニクス、電子システム、医用・介護ロボット、モーター、計測・制御、 人工知能
領域B	地球環境・エネルギー	新エネルキ*ー, エネルキ*ー変換, 省エネルキ*ー, 資源化技術, 流動現象,伝熱
領域C	情報処理·情報通信	マルチメディア処理,信号処理,コンピュータシステム,コンピュータソフトウェア,通信,ネットワーク, LSI設計
領域D	ライフサイエンス	生体計測,人工臓器,再生医療工学,福祉工学, パイオメカニクス,抗体工学, 生理活性物質,人工細胞,遺伝子工学, パイオマテリアル, タンパク質工学, 体内薬液搬送システム
領域E	ナノサイエンス・ナノテクノロジー	電子デバイス, 量子デバイス,ナノマテリアル,ナノ加工, 量子物理学, 理論化学, 素粒子論, 複雑系物理学, 固体電子論
領域F	先進物質•先進材料	燃料電池, 磁性材料,超分子, 有機/無機ハイブリット・材料, 無機・金属材料, 超伝導, 機能性高分子材料, 高分子合成, リチウム電池, 機能性セラムクス, ナノカーボン物質, グリーンプロセス, 有機機能材料, 有機合成
領域G	社会基盤·生産	建築デザイン, 建築マネジメント, 建築エネルギー, 塑性加工, 切削加工, 接合加工, 精密加工, 材料力学, トライポロジー
領域H	プロジェクト系	企業・国・自治体等との社会連携プロジェクト